
J
H
E
P
0
1
(
2
0
0
8
)
0
4
7

Published by Institute of Physics Publishing for SISSA

Received: November 21, 2007

Accepted: January 15, 2008

Published: January 18, 2008

D-branes on AdS flux compactifications

Paul Koerber

Max-Planck-Institut für Physik – Theorie,
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Abstract: We study D-branes in N = 1 flux compactifications to AdS4. We derive their

supersymmetry conditions and express them in terms of background generalized calibra-

tions. Basically because AdS has a boundary, the analysis of stability is more subtle and

qualitatively different from the usual case of Minkowski compactifications. For instance,

stable D-branes filling AdS4 may wrap trivial internal cycles. Our analysis gives a geomet-

ric realization of the four-dimensional field theory approach of Freedman and collaborators.

Furthermore, the one-to-one correspondence between the supersymmetry conditions of the

background and the existence of generalized calibrations for D-branes is clarified and ex-

tended to any supersymmetric flux background that admits a time-like Killing vector and

for which all fields are time-independent with respect to the associated time. As explicit

examples, we discuss supersymmetric D-branes on IIA nearly Kähler AdS4 flux compacti-

fications.
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1. Introduction and summary

Supersymmetric compactifications to AdS4 have some qualitatively different properties

from compactifications to Minkowski space. The supersymmetry conditions seem more

restrictive in the AdS case. While in the Minkowski case fluxes are added for reasons such

as moduli stabilization, they are unavoidable in the AdS case. Furthermore, classically1

an SU(3)-structure compactification is only possible in type IIA supergravity, while for

1Starting from a classical SU(3)-structure compactification in IIB, AdS vacua are possible after taking

into account non-perturbative corrections, as in the example of [1]. The internal geometry of these kinds

of vacua has been discussed in [2], where it has been shown how non-perturbative corrections arising from

localized D-instantons can destabilize the SU(3)-structure into a general SU(3)×SU(3)-structure, while the

SU(3)-structure can be preserved only if the D-instantons are smeared in the internal space.
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type IIB we must have a static SU(2)-structure or, presumable, a more general SU(3) ×
SU(3)-compactification, although examples of the latter are not known yet. The type IIA

SU(3)-structure compactifications are phenomenologically interesting as it is possible in

this setting to construct models with all moduli fixed (see e.g. [3 – 7]).

As shown in [8], also for AdS compactifications the supersymmetry conditions are

naturally expressed in the language of generalized complex (GC) geometry [9, 10] in terms

of two compatible pure spinors of SO(6, 6): Ψ1 and Ψ2. They can also be thought of as

polyforms, sums of forms of different even/odd dimensions, and it may be useful to keep

in mind the SU(3)-structure case where they correspond to Ω and exp(iJ) in IIA and

vice-versa in IIB. Then, defining dH ≡ d+H∧, the background supersymmetry conditions

schematically read (see eq. (2.7) below for the precise expressions)

dHΨ1 ≃ (1/R)ReΨ2 + RR-fluxes ,

dHΨ2 ≃ (1/R)ImΨ1 , (1.1)

where R is the AdS-radius. If a pure spinor is dH-closed, then it defines an integrable GC

structure.2 Thus, in the flat-space limit (R → ∞) Ψ2 defines and integrable GC structure,

while the Ramond-Ramond (RR) fluxes create an obstruction to the integrability of the

GC structure associated to Ψ1. On the other hand, for R finite there are extra ‘geometric

fluxes’ on the right-hand side of (1.1) acting as obstructions to the integrability of both

GC structures. This will complicate even further the general study of the moduli (along

the lines of e.g. [11]).

In this paper we will study D-branes on this general class of AdS flux compactifi-

cations. Supersymmetric D-branes should minimize their energy inside their deformation

class and this physical principle is usually realized by the existence of (generalized) calibra-

tion forms [12 – 15] which must obey appropriate differential conditions. This is expected to

happen quite generically and it was indeed shown in [15] that in the Minkowski limit of the

above class of vacua each of the background supersymmetry equations provides exactly the

right differential condition for having a proper calibration for a different type of D-brane as

viewed from the four-dimensional space-time: space-filling, domain wall or string-like. In

particular, the presence of the RR-fluxes in (1.1) is required because of the Chern-Simons

term in the D-brane action, providing an extension of the general idea presented in [13].

However, when R is finite the appearance of the additional ‘geometric fluxes’ on the

right-hand side of (1.1) seems puzzling in view of this relation between background super-

symmetry and D-brane calibrations. In this paper we discuss how these additional terms

are related to one of the deep differences between AdS and flat space-time: that AdS has

a boundary that can be reached in finite time. This changes considerably the energy and

stability properties in comparison to the flat case and was studied some time ago in a series

of papers [16, 17] both at the perturbative and non-perturbative level, in supergravity and

rigid theories. For example, it was shown that the mass of the fields and more generally

the potential density of a theory in AdS need not be non-negative in order to have a stable

2In fact, the pure spinor being closed is slightly stronger so the converse is not true. For the precise

statement see [9, 10].
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vacuum. As we will show, these four-dimensional features have an elegant realization in our

D-brane setting: just as in the flat case we will see that the eqs. (1.1) can be equivalently

seen as integrability conditions for a set of generalized calibrations that provide a natu-

ral setting for studying supersymmetry, energetics and stability of D-branes in AdS flux

compactifications. Even though we consider here explicitly the case of compactifications

to AdS4, the physical arguments are quite general. Indeed, as we prove in appendix A,

any time-independent Killing spinor generating a supersymmetry of a static background

geometry can be used to construct a corresponding calibration characterizing the static

D-brane configurations preserving it.

The modification of the energetics and stability of D-branes essentially induced by the

boundary of AdS can have profound implications on the topology of stable supersymmetric

D-branes in the internal space. Indeed, consider for concreteness space-filling branes in

compactifications to flat space. To be stable they must usually wrap an internal non-

trivial cycle unless background fluxes enter the game through the dielectric Myers effect [18].

However, in compactifications to AdS space it often happens that they wrap internal trivial

cycles. For example, we will consider somewhat more explicitly SU(3)-structure IIA flux

compactifications. They include Freund-Rubin-like compactifications on S6 which admit

supersymmetric D-branes wrapping a trivial S3 ⊂ S6 (see also [19]).

Let us now sketch in more detail the concrete mechanism. Unlike in Minkowski space

a D-brane extending to infinity in its external AdS part has a boundary at the boundary

of AdS, even though in the internal part it wraps a cycle. In itself the D-brane is not

consistent because it violates invariance under RR gauge transformations on this bound-

ary. Intuitively RR-charge and by supersymmetry also energy can leak away. To have a

consistent description of the dynamics in cases like this, the standard procedure is to add

boundary conditions. In our setting this implies that when considering fluctuations one

would not be allowed to change the D-brane internal embedding at the boundary. As a

result, these D-brane fluctuations have non-zero gradient energy since they have to have

some profile in order to vanish at the boundary, and while naively they might seem tachy-

onic they are lifted to be massless or even massive when this gradient energy is taken into

account. This is in fact the Breitenlohner-Freedman [16] mechanism.

A perhaps more physical intuition about how this mechanism works can be obtained

by generalizing the above prescription in such a way as to allow fluctuations that are not

vanishing at the boundary. An example would be the fluctuations that one might naively

consider, the ones constant over the AdS under which the D-brane moves homogeneously

in the internal space. The price to pay is that the system must be completed by a D-

brane lying at the boundary of AdS that acts as a sink for the charge and the energy.

This D-brane thus restores the RR gauge invariance discussed above. Now, if one looks

more closely at the bulk supersymmetry conditions of the form (1.1) it turns out that they

are naturally associated to the calibration for the network of both the original D-brane

extending to infinity and the additional D-brane at the boundary. These networks can be

studied in generalized geometry along the lines of [20].

From both points of view one has to abandon (at least for the fluctuations) the pic-

ture that is used in the Minkowski analysis, where the D-branes are constant over the
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space-time part. It is thus natural to study generalized calibrations in a 1+9-dimensional

setting, which, taking into account that one needs a time-like Killing vector for studying

static calibrations, is the most general. Extending the relation between the supersymmetry

conditions for the bulk and the differential calibration conditions to this general setting is

exactly the content of appendix A.

Another peculiar effect of AdS is that in the effective four-dimensional supergravity

theory, the D-flatness condition for supersymmetric AdS vacua is automatically implied

by the F-flatness. In [2] we showed that for the closed string sector this result can be

uplifted to ten dimensions. Extending the identifications of D- and F-terms for D-branes

found in [21] to the case of AdS4 flux vacua, we find in this paper that also for the open

string sector the D-flatness condition is implied by the F-flatness condition. As we will see

another related observation is that in the AdS case there are no string-like supersymmetric

D-branes. These results are of course related to the additional terms proportional to 1/R,

which appear on the right-hand side of (1.1), giving another nice example of the deep

relation between the closed and open string sector.

We provide examples of calibrated D-branes in a special class of type IIA SU(3)-

structure backgrounds, the nearly Kähler geometries. Many of these examples are similar

to much better studied supersymmetric D-brane configurations in AdS5 backgrounds, see

e.g. [22 – 24], and in fact nearly Kähler geometry can be seen as the six-dimensional analogue

of Sasaki-Einstein geometry.

2. The background AdS4 flux vacua

We start by describing the background geometry, adopting the language of generalized

complex geometry as in [8]. This already proved to be a very natural framework for

compactifications to Minkowski R
1,3 especially once D-branes are taken into account [14,

15]. Indeed, in that case each of the background supersymmetry equations corresponds

to a type of calibrated D-brane [15, 21]. As we will show in section 5, also for AdS

compactifications a natural interpretation can be found for the extra terms and the relation

still holds.

We consider type II theories on ten-dimensional space-times of (warped) factorized

form AdS4×w M , where M is the internal six-dimensional space. Thus the ten-dimensional

metric has the form

ds2
(10) = e2A(y)ds2

(4) + gmn(y)dymdyn , (2.1)

where ds2
(4) is the AdS4 metric. All the background fluxes preserve the conformal symmetry

SO(2, 3) of AdS4 and depend only on the internal coordinates ym. Thus the NSNS H-field

has only internal indices and the RR fields, which in the democratic formalism of [25] can

be conveniently organized in the polyform F =
∑

n F(n) (n is even in IIA and odd in IIB),

split as follows

F = vol4 ∧ e4AF̃ + F̂ . (2.2)
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Here vol4 is the (unwarped) AdS4 volume form and F̃ and F̂ have only internal indices. In

the democratic formalism the RR-fields are doubled and this is compensated by imposing

a Hodge duality condition, which for the internal and external components of the RR fields

implies F̃ = ∓σ(⋆6F̂ ) in IIA/IIB,3 where σ is the operator acting on forms by reversing

the order of their indices.

Since we require minimal N = 1 four-dimensional supersymmetry, our background

admits four independent Killing spinors of the form

ǫ1 = ζ+ ⊗ η
(1)
+ + (c.c.) ,

ǫ2 = ζ+ ⊗ η
(2)
∓ + (c.c.) , (2.3)

for IIA/IIB. In the above the two internal chiral spinors η
(1)
+ and η

(2)
+ are fixed for a certain

background geometry. They define a reduction of the structure group of TM ⊕ T ⋆
M from

SO(6, 6) to SU(3)× SU(3) [10] and thus characterize the solution. ζ+ on the other hand is

any of the four independent AdS4 Killing spinors satisfying the equation

∇µζ− = ±1

2
W0γµζ+ , (2.4)

for IIA/IIB.4 W0 is proportional to the on-shell value of the superpotential W in the four-

dimensional description of [2] so that |W0|2 = −Λ/3 with Λ the effective four-dimensional

cosmological constant.

In [8] the supersymmetry equations obtained from putting the supersymmetry varia-

tions of the fermions to zero were written in terms of the SO(6, 6) pure spinors Ψ±. These

SO(6, 6) spinors can also be seen as polyforms and related to those by the Clifford map

as the internal SO(6) bispinors η
(1)
+ ⊗ η

(2)†
± . In the case of AdS4 the two internal spinors

must have the same norm [26]: η
(1)†
+ η

(1)
+ = η

(2)†
+ η

(2)
+ = |a|2, while for compactifications to

Minkowski this is imposed as an additional requirement necessary for the background to

admit static supersymmetric D-branes [15]. It is convenient to introduce the normalized

pure spinors5

/Ψ± = − 8i

|a|2 η
(1)
+ ⊗ η

(2)†
± , (2.5)

and rename them as

Ψ1 = Ψ∓ and Ψ2 = Ψ± in IIA/IIB. (2.6)

The supersymmetry conditions found in [8] can be rewritten as the following minimal set

of equations

dH

(

e4A−ΦReΨ1

)

= (3/R) e3A−ΦRe(eiθΨ2) + e4AF̃ , (2.7a)

dH

[

e3A−ΦIm(eiθΨ2)
]

= (2/R) e2A−ΦImΨ1 , (2.7b)

3Here and in the following, the upper sign is for IIA while the lower is for IIB.
4We indicate the four-dimensional (unwarped) curved gamma-matrices with γµ and the six-dimensional

ones with γ̂i. See [15] for detailed conventions.
5Note that in [20, 21, 27, 28] the normalized pure spinors (2.5) were denoted by Ψ̂±, while Ψ± referred

to the ones via the Clifford map associated to η
(1)
+ ⊗ η

(2)†
± without normalization.
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where dH = d + H∧ and we put W0 = e−iθ

R with R the AdS radius. They imply as

integrability conditions6 the two further equations

dH(e2A−ΦImΨ1) = 0 , dH

[

e3A−ΦRe(eiθΨ2)
]

= 0 . (2.8)

So in the AdS case we have two minimal real equations for the pure spinors, while the two

additional equations (2.8) come as a necessary requirement. This is significantly different

from the Minkowski case, which we can find by taking the R → ∞ limit, where one has

four independent polyform equations. As explained in [2] the first equation of (2.8) can be

interpreted as a D-flatness condition, while the other equations in (2.7) and (2.8) are F-

flatness conditions. In general, the D-flatness condition indeed follows from the F-flatness

conditions if W 6= 0 as is the case for AdS compactifications.

As a guiding example it can be useful to keep in mind the form of the above pure

spinors in the SU(3)-structure case, in which the internal spinors are parallel. Putting

η
(1)
+ = aη+ and η

(2)
+ = bη+ with |a| = |b| and η†+η+ = 1, and further defining the (almost)

symplectic two-form Jmn = iη†+γ̂mnη+ and (3, 0)-form Ωmnp = iη†−γ̂mnpη+ characterizing

the SU(3)-structure, one has

Ψ+ = −i(a/b)eiJ , Ψ− = (a/b∗)Ω . (2.9)

Such a restriction to parallel internal spinors however, while allowing AdS vacua in

IIA [29, 30], automatically excludes AdS vacua in IIB as can be easily seen from (2.7b), at

least if such a structure is not deformed by non-perturbative corrections [2]. To have IIB

classical AdS vacua one is then forced to consider a more general SU(2)- or SU(3)×SU(3)-

structure background.

The extra terms on the right-hand side of (2.7) will force us to rethink the relation

between bulk supersymmetry conditions and calibration conditions. So first let us introduce

calibrated D-branes as in [14, 15].

3. Introducing supersymmetric D-branes

Let us now introduce static supersymmetric probe D-branes on the backgrounds described

in section 2 following the procedure based on κ-symmetry of [14, 15]. Since the details

turn out to be almost identical, we will omit them here, referring to those papers or to

appendix A.1 where we review and extend the procedure to more general backgrounds.

Disallowing world-volume field-strength along AdS4 we see from the usual κ-symmetry

argument that, locally, the supersymmetry conditions for the D-branes look exactly the

same as the ones for flat space [15]. Thus we know that we can only have supersymmetric

D-branes which from the four-dimensional point of view are either space-filling D-branes,

strings or domain walls. The actual shape of the last case in the four dimensions will be

considered in section 5.2.

6We take into account the equations of motion for F̂ .
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Focusing on the internal manifold M , an internal generalized p-dimensional cycle7

(Σ,F) wrapped by a supersymmetric D-brane must satisfy a calibration-like condition of

the form

[

ω|Σ ∧ eF
]

top
= EDBI(Σ,F) , (3.1)

where8

EDBI(Σ,F) = eqA−Φ
√

det(g|Σ + F) dpσ , (3.2)

with q = 4, 3, 2 for space-filling, domain wall and string-like D-brane configurations respec-

tively, while correspondingly

ω(sf) = e4A−ΦReΨ1 , ω(DW)
ϕ = e3A−ΦRe(eiϕΨ2) , ω(string) = e2A−ΦImΨ1 , (3.3)

where ϕ is a constant phase.

From (3.1) one gets that the four-dimensional effective tension is given by

T4d =

∫

Σ
ω|Σ ∧ eF , (3.4)

and should not vanish for a non-degenerate physically meaningful configuration. However,

from (2.7b) one immediately sees that ω(string) is dH -exact and thus T
(string)
4d = 0. We

conclude that supersymmetric tension-full strings cannot be obtained by wrapping D-

branes on internal cycles, and this suggests that any non-BPS D-brane string cannot be

stable and will eventually annihilate locally on its world-sheet. Thus, while in Minkowski

compactifications stable BPS D-brane strings are naturally admitted, in the AdS4 case

they are not. This is an example of one of several deep differences between Minkowski

and AdS4 flux compactifications and has a counterpart in the expected four-dimensional

description of the system. We will come back to this in the next section. For the same

reason ϕ = θ tension-full domain walls can be obtained only if F̃ is not dH -exact.

So far we have only studied the purely algebraic aspect of the supersymmetry condition.

But the calibration-like condition (3.1) requires some more discussion to be interpreted as

a proper calibration condition. Indeed, we still have to show the stability of the calibrated

configurations under continuous deformations. As explained in appendix A.1, if we tried

to insist on a local four-dimensional picture where the main properties can be obtained

looking only at the internal six-dimensional part, this would require the calibration forms

ω̂, which are analogously to (A.8) defined as

ω̂(sf) = ω(sf) − e4AC̃ , ω̂(DW)
ϕ = ω(DW)

ϕ , (3.5)

to be dH-closed. This is indeed the case for Minkowski compactifications, but not for

AdS because of the appearance of ‘geometric fluxes’ on the right-hand side of (2.8) whose

7We use the terminology of [10] where a generalized submanifold (Σ,F) is nothing but a submanifold

Σ with a world-volume field-strength F satisfying the modified Bianchi identity dF = H |Σ, which can be

extended to include monopole sources if one considers networks of D-branes [20].
8For simplicity we put all the D-brane tensions to one. The correct tensionful prefactors can be easily

reintroduced.
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role has to be properly clarified to have a consistent global picture. We will address this

problem in section 5 where we will see that those geometric fluxes have a very natural

interpretation in a full ten-dimensional picture. But let us first take a closer look at the

four-dimensional interpretation of the present results.

4. Four-dimensional interpretation: F- and D-terms

In this section we write the supersymmetry/calibration conditions for D-branes filling AdS4

as F- and D-flatness conditions. We will show that because of the AdS4 geometry the D-

flatness condition for the open string modes follows from the F-flatness conditions, as

expected on general grounds and as was also shown for the closed string moduli in [2].

The calibration conditions obtained from (3.1) by using the three calibrations (3.3)

admit an interesting alternative formulation [15, 21]. Indeed, an equation of the form

[Re(eiαΨ±)|Σ ∧ eF ]top =
√

det(g|Σ + F) , (4.1)

for some constant phase eiα, can be rewritten as the following pair of conditions (supple-

mented with a condition on the orientation)

[(X · Ψ∓)|Σ ∧ eF ]top = 0 , [Im(eiαΨ±)|Σ ∧ eF ]top = 0 , (4.2)

for any X = X + ξ ∈ TM ⊕ T ⋆
M , with X· = ιX + ξ∧ .

For space-filling branes an effective N = 1 four-dimensional description should exist.

The complete system should in principle include both open and closed string modes, al-

though for the moment we focus on the open string modes and freeze the closed string

modes. The effective theory is described by the Kähler potential K, the superpotential W
for the chiral multiplet sector, the D-term D and the holomorphic metric f for the vector

multiplet. If G indicates the metric for the chiral multiplets, the effective potential takes

the form

V = eK
[

G−1(DW,DW̄) − 3|W|2
]

+
1

2
(Ref)−1(D,D) . (4.3)

[21] compared the potential (4.3) with the potential found from the D-brane action and

also studied the supersymmetry transformation rules, finding in both cases the following

identifications for the D- and F-terms

D = [(e2A−ΦImΨ1)|Σ ∧ eF ]top , eK/2DW(X) = [(e3A−Φ
X · Ψ2)|Σ ∧ eF ]top , (4.4)

where the F-terms are defined by considering the covariant derivative D along an arbitrary

section X of the generalized normal bundle N(Σ,F), which contains the infinitesimal defor-

mations of the generalized cycle (Σ,F) (see [21, 27] for the definition and more details).

Note that the discussion of [21] about the holomorphy of the superpotential is still valid

and one can locally define a (in general non-integrable) complex structure on N(Σ,F), such

that the F-term in (4.4) only contains holomorphic indices.

– 8 –
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Until now we have only proved the algebraic equivalence (up to orientation choice) of

the supersymmetry/calibration condition (3.1) for space-filling D-branes and the pair of

conditions

D = 0 (D-flatness) , (4.5a)

eK/2DW(X) = 0 , ∀X ∈ TM ⊕ T ⋆
M (F-flatness) . (4.5b)

However, taking into account also the differential background supersymmetry equations

more can be said. Indeed, let us choose Xλ = dλ for some λ. Then, using (2.7b) we have

that
∫

Σ
eK/2DW(Xλ) = −2i

e−iθ

R

∫

Σ
λD . (4.6)

Since λ can be an arbitrary function we arrive at the conclusion that for AdS flux compact-

ifications (for which R is finite) F-flatness implies D-flatness! Thus, in order to check that

a space-filling D-brane is supersymmetric (up to the appropriate choice of orientation) it

is sufficient to check the F-flatness condition.

This remarkable result is not so unexpected if one considers the problem from the

four-dimensional point of view. Indeed, even though we are considering a probe D-brane,

we expect it to be described by a complete supergravity admitting an AdS vacuum.9 In a

general N = 1 supergravity there is a relation between F- and D-terms which has exactly

the form (4.6) (see e.g. [31] where this point is particularly stressed). The identification

can be made precise using the results of [21] which allow to properly identify the D-term

as the moment map associated to the world-volume gauge transformations, parameterized

by λ in (4.6). Even though [21] focused on R
1,3 flux compactifications, the analysis is still

valid here.

This also explains from a four-dimensional point of view why we cannot have stable

BPS D-brane strings in AdS flux compactifications. Indeed, they should correspond to D-

term solitonic strings that must be F-flat everywhere [32] and whose tension is essentially

given by a Fayet-Iliopoulos term. Since F-flatness implies D-flatness, such a non-vanishing

Fayet-Iliopoulos term is not possible.

5. A closer look at D-brane stability

5.1 D-brane energy problem and sketch of its solution

In sections 3 and 4 we have discussed the supersymmetry conditions that must be imposed

on the internal generalized cycles wrapped by D-branes that are space-filling, domain wall

or string-like in AdS4 — concluding that the latter are dynamically excluded — from a

local and algebraic point of view. Looking at the differential conditions however, we found

that at first sight the would-be generalized calibration form is not dH -closed so that the

calibrated configurations are not at a minimum of the energy. In this subsection we state

9The closed string may be decoupled by sending both the cosmological constant and the Planck mass

to infinity in order to be left with a rigid theory on an AdS background.
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the problem and sketch the main principle of the solution, for which the global structure

of AdS4 turns out to be important. The details are worked out in the next subsections.

We consider for definiteness space-filling D-branes, while the analysis for domain wall

D-branes is similar. It is tempting to associate to a configuration wrapping the internal

generalized cycle (Σ,F) an effective four-dimensional potential

V(Σ,F) =

∫

Σ
e4A−Φ

√

det(g|Σ + F) −
∫

Σ
e4AC̃|Σ ∧ eF , (5.1)

where C̃ is the (locally defined) RR-potential such that F̃ = e−4AdH(e4AC̃). However,

such a potential turns out not to be naturally bounded from below by its value on su-

persymmetric configurations satisfying (3.1). The reason is that ω̂(sf) = ω(sf) − e4AC̃ is

not dH -closed due to the term proportional to Re(eiθΨ2) on the right-hand side of (2.7a).

Thus ω̂(sf) cannot be seen as a proper generalized calibration and we cannot use the usual

argument showing that calibrated configurations are energy density minimizing in their

generalized homology class as in [14, 15]. Similarly for domain walls the problem comes

from the term on the right-hand side of (2.7b).

Although the calibrated configuration is not in general at a minimum of the potential,

one can show that it is still at least at a stationary point so that it is a solution of the

equations of motion. Indeed, if we vary along a section X of the generalized normal bundle

N(Σ,F), which as shown in [21] describes the general deformation of (Σ,F), we find

δXV(Σ,F) =

∫

Σ
LXω̂(sf) ∧ eF =

∫

Σ
X ·dH ω̂(sf) ∧ eF =

3

R

∫

Σ
Re(eiθeK/2DW(X)) = 0 , (5.2)

where the last expression is zero because of the F-flatness. However, around a stationary

point that is not a minimum there are tachyonic modes. It is well known however that

in field theories on AdS space tachyonic modes do not signal instability as they would in

Minkowski space as long as they are above the Breitenlohner-Freedman bound [16]. In a

moment we will argue that indeed they are.

In the following we will indicate the submanifold that the D-brane wraps in the AdS

part by Π. The solution to the problem comes naturally if we consider the global struc-

ture of AdS4, which can be considered as a cylinder having a boundary at infinity with

topology R × S2. Thus a space-filling or a domain wall D-brane extending to infinity that

is homogeneous — which means wrapping the same internal generalized cycle (Σ,F) in all

its space-time points and having vanishing world-volume gauge field along AdS4 — has a

boundary at the boundary of AdS4: ∂(Π × Σ) = ∂Π × Σ = (Π ∩ ∂AdS4) × Σ. Therefore,

on its own it is not a cycle, which leads to a problem of invariance under RR gauge trans-

formations (for a discussion in the generalized context see [20]). Indeed, if we consider the

variation under δC = dHλ of the Chern-Simons term in the action of such a D-brane we

find

δλSCS =

∫

∂Π×Σ
λ|∂Π×Σ ∧ eF 6= 0 . (5.3)

This breaking of the gauge invariance implies a breaking of charge conservation and by

supersymmetry also a leaking of energy at the boundary of AdS4.
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(a)

AdS4

internal

Σ

Σ′(ρ)

(b)

AdS4

Σ
Σ′

internal

B

Figure 1: In both pictures the external AdS4 is represented as a line segment, while the internal

cycles are represented as circles. (a) Fluctuation that vanishes at the boundary. The shape of

the deformed cycle Σ′(ρ) depends on the location in AdS4. Since the fluctuation is required to

vanish at the boundary of AdS4, the deformed cycle has to coincide there with the original cycle.

(b) Homogeneous fluctuation. Σ is homogeneously deformed into Σ′, which means in particular

that the deformation does not vanish at the boundary of AdS4. Suppose B is the space between

AdS4×Σ and AdS4×Σ′. From the picture it is clear that the boundary of B is not only the difference

between the original D-brane and its deformation, but also includes a difference of boundary D-

branes (shaded area).

There are basically two ways out. One is to consider only gauge transformations and

for consistency also fluctuations that vanish at the boundary. This amounts to imposing

fixed boundary conditions. The other is to introduce a domain wall respectively string-

like D-brane at the boundary of AdS4 that acts as a sink for RR-charge and energy.

Both of these require to extend the class of allowed deformations to the non-homogeneous

ones, even though the original configuration we expand around is homogeneous. So we

must consider the full nine-dimensional space (or at least the seven-dimensional space

including the internal space and the radial coordinate) as a whole. How to construct a

total calibration on such a space is explained in detail in appendix A. For the case of AdS4

compactifications the calibration is given by (5.7) and (5.16) below.

From the point of view of the low-energy field theory in AdS4 the picture where we

impose fixed boundary conditions on the fluctuations is the most natural one. In this

case the deformed internal cycle Σ′(ρ) depends on the radial coordinate ρ of AdS4. See

figure 1(a). As we will discuss explicitly in the next subsections, this non-trivial radial
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dependence gives an extra contribution to the total energy density, make the latter positive

definite. One can also look in the way of Breitenlohner and Freedman [16]: fluctuation

modes that naively look tachyonic acquire extra gradient energy because of the non-trivial

profile Σ′(ρ) and are lifted to massless or even massive modes. These modes are said to

obey the Breitenlohner-Freedman bound.

Next, suppose that we want to consider fluctuations that do not vanish at the bound-

ary, an example would be the homogeneous fluctuations we originally considered. See

figure 1(b). Since the difference of the submanifolds wrapped by the deformed and the

original D-brane Π× (Σ′−Σ) has a boundary, it can never be a boundary itself, invalidat-

ing the usual calibration argument (A.10). The way out is to add to the original D-brane

a boundary D-brane wrapping ±∂Π × Γ (upper/lower sign for space-filling/domain wall

D-brane) with Γ a submanifold in the internal space so that ∂Γ = Σ. This also solves the

RR gauge transformation problem since ∂(±∂Π×Γ) = −∂Π×Σ so that the transformation

of the boundary D-brane exactly compensates the one of the original D-brane (5.3). Such

a boundary D-brane reminds us of the ‘membrane at the end of the universe’ studied in

the eighties (see e.g. [33] for a review and references therein for the original work). One

implication is that we should also take the energy density of the boundary D-brane into

account so that the naive four-dimensional effective potential of eq. (5.1) is modified into

Ṽ(Σ,F) =

∫

Σ
e4A−Φ

√

det(g|Σ + F) −
∫

Σ
A|Σ ∧ eF , (5.4)

where the ‘modified’ RR-potential A is defined such that

dHA =
3

R
e3A−ΦRe(eiθΨ2) + e4AF̃ . (5.5)

We will see below that the part of A corresponding to the first term on the right-hand

side of (5.5) is indeed associated to a boundary D-brane. Moreover, we will see that the

modified potential is positive definite and bounded from below by its value for calibrated

configurations.

Field theories on AdS space-times have been studied in [17], where the same problem of

finding a manifestly positive definite potential density was addressed. It was shown that the

proper energy density, obeying the proper commutation relations with the other charges of

the theory, contains a counterterm which corrects the ‘naive’ potential density to a positive

definite quantity. The above discussion thus provides a nice geometrical interpretation of

this counterterm. Indeed, the corrective term in (5.5) has exactly the form (3/R)Re(eiθW)

that was found for the corrective term in the Wess-Zumino model studied in [17].

5.2 Total calibration in Poincaré coordinates

In the previous subsection we saw that the solution of the stability problem required con-

sidering generalized calibrations in the complete nine-dimensional space (or at least the

seven-dimensional space consisting of the radial coordinate and the internal space). Such

a complete generalized calibration can be constructed by following the general procedure

described in appendix A, which we will apply here to compactifications on AdS4. In this
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subsection we use Poincaré coordinates to describe AdS4, avoiding some technical subtleties

that arise when adopting global coordinates. However, most of the results of the present

subsection can be applied to AdS4 in global coordinates too as we will show in the next

subsection.

The metric in Poincaré coordinates (t, x1, x2, z) can be written as

ds2
(4) = e

2z
R (−dt2 + d~x2) + dz2 , (5.6)

where all the coordinates extend to all of R. To construct the calibration we need the

explicit form of the four-dimensional spinors ζ+ satisfying the Killing spinor equation (2.4),

which can be found for example in [34]. Two are time-independent and we can use them

to directly construct two corresponding total generalized calibrations, which are related to

each other by a rotation in the (x1, x2)-plane. Thus, any calibration can be obtained by

applying a rotation to the following reference calibration:

ΘP = Θ
(sf)
P + Θ

(DW)
P , (5.7)

with

Θ
(sf)
P = e

3z
R dx1 ∧ dx2 ∧ dz ∧ ω(sf) + e

3z
R dx1 ∧ dx2 ∧ ω

(DW)
ϕ=θ , (5.8)

and

Θ
(DW)
P = e

2z
R dx1 ∧ dz ∧ ω

(DW)
ϕ=θ−π/2 + e

2z
R dx1 ∧ ω(string) , (5.9)

where the different ω are given in (3.3). Note that the SO(2) invariance is explicitly broken

only by Θ
(DW)
P .

A κ-symmetry argument analogous to the one used for six internal dimensions in [14,

15] can be used to show that D-branes calibrated with respect to ΘP are supersymmetric.

Furthermore using (2.7a) one can easily check that dHΘ
(sf)
P = −e

3z
R dx1∧dx2∧dz∧e4AF̃ and

dHΘ
(DW)
P = 0. Thus ΘP is a well-defined “total” generalized calibration as in appendix A.1,

so that calibrated D-brane networks will be at a minimum of the energy and thus stable.

D-branes with fixed boundary conditions should thus calibrate (5.7), which sees the non-

trivial radial dependence and thus properly picks up the gradient energy.

Note also that the above differential conditions on ΘP are equivalent to the requirement

that the background supersymmetry conditions (2.7) are satisfied. Thus we find that, like in

the R
1,3 case, the AdS flux compactifications are completely characterized by the existence

of the generalized calibration ΘP which also identifies the supersymmetric configurations of

D-branes and networks. Differently from the R
1,3 case we have used only two background

Killing spinors (the time-independent ones) to construct the total calibration Θ. This is

related to the fact that we have only two independent supersymmetry equations (2.7), while

the other two (2.8) come as integrability conditions and it has a natural interpretation if one

considers AdS4 in Poincaré coordinates as a warped product of flat R
1,2 times an internal

direction z. Indeed, the two independent time-independent supersymmetries correspond

to the minimal supersymmetries on R
1,2, while the other (time-dependent) two correspond
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to superconformal supersymmetries in the full N = 1 superconformal algebra which is

required to have a consistent supersymmetric AdS compactification.

Let us now allow for varying boundary conditions and consider the case of a space-

filling D-brane first. After we introduce the boundary D-brane, the network of space-filling

D-brane and boundary domain wall is supersymmetric if and only if it calibrates (5.7) where

the relevant part is of course Θ
(sf)
P . The domain wall component will then calibrate the

second term in (5.8) and the dH of this term will indeed produce the first term on the right-

hand side of (5.5) as promised. If we consider the energy difference of two such networks,

this term, once integrated, will correspond to the energy of a domain wall at ∂AdS4 and

stretching between the two space-filling D-brane configurations in the internal space. It

can be considered as the energy cost associated to changing the boundary conditions. More

complicated networks can be studied along the lines described in [20].

Analogously for domain walls the solution to the energy problem comes from the second

term on the right-hand side in (5.9). The structure of ΘP allows moreover to identify the

geometry of the possible domain walls in the AdS4 part. Indeed, suppose that a Dp-brane

domain wall wraps a submanifold Π in AdS4 and a cycle Σ in the internal space and let us

focus on the part of ΘP relevant for the domain wall component. The calibration condition

can be split into a four-dimensional and an internal part

√

−gAdS|Π d2σ = eiα(e
3z
R dx1 ∧ dx2 − ie

2z
R dx1 ∧ dz) , (5.10a)

√

g|Σ + F dp−2σ =
[

ei(θ−α)Ψ2 ∧ eF
]

top
, (5.10b)

for some phase eiα. For the four-dimensional part it follows

Im
[

eiα(e
3z
R dx1 ∧ dx2 − ie

2z
R dx1 ∧ dz)

]

= 0 , (5.11)

from which we extract the profile

sin α = 0 : z = c or

sin α 6= 0 :
dx2

dz
= cotan α e−

z
R ⇒ x2 = −R cotan α e−

z
R + c ,

(5.12)

with c an integration constant. These profiles are basically the same as in [22], but now in

AdS4 instead of AdS5. The D-brane embeddings in AdS5 × S5 of that paper were indeed

shown to be supersymmetric in [23]. Through eiα the profile that a D-brane wraps in the

four dimensions depends on the phase of the calibration form in the internal space.

A last remark follows from the observation that AdS4 in Poincaré coordinates can be

seen as a warped product of R
1,2 with a radial coordinate. In this way one can consider

compactifications to AdS4 on a six-dimensional internal space as compactifications to flat

Minkowski R
1,2 on a seven-dimensional internal space. For supersymmetric compactifica-

tions the internal space has a G2 × G2-structure which is built out of the SU(3) × SU(3)-

structure of the original six-dimensional internal space. This leads to a realization of

generalized Hitchin flow, which is discussed in appendix B.
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5.3 Supersymmetry and energetics in global coordinates

In the previous subsection we have described the total calibration for AdS4 compactifica-

tions in Poincaré coordinates. The reader might remark that it would be nice to also have a

description of these total calibrations in global coordinates since in contrast to Poincaré co-

ordinates which only describe a patch of AdS4, global coordinates parameterize the whole

space. Unfortunately the general procedure described in appendix A cannot be applied

straightforwardly because the Killing spinors in global coordinates are time-dependent (see

e.g. [16] for explicit expressions) and thus do not fulfill a starting assumption of the analysis

of appendix A. It might seem surprising that we can describe calibrations in one coordinate

system and not in another. The basic reason is that so far our formalism of calibrations

required the existence and choice of a global time coordinate and can only describe static

configurations without electric world-volume gauge fields. An extension of the formalism to

the non-static case would require a much more subtle treatment of the energy and we leave

it for future work. In any case, it turns out that Poincaré and global coordinates are re-

lated by a time-dependent coordinate transformation so that the calibrated configurations,

which are static in the one, are generically time-dependent in the other.

Our inability of applying the procedure of appendix A to write a total calibration in

global coordinates may suggest that the arguments presented in subsection 5.1, explain-

ing how to interpret the stability of supersymmetric D-branes, are only valid in Poincaré

coordinates. Fortunately, we can still propose a candidate for a total calibration in global

coordinates even though it is not constructed from the supersymmetry Killing spinors. Let

us take the (unwarped) AdS4 metric in global coordinates

ds2
(4) =

R2

cos2ρ
(−dt2 + dρ2 + sin2 ρdΩ2) , (5.13)

where 0 ≤ ρ < π/2 is the radial coordinate, dΩ2 is the metric of a two-sphere of radius

one (parameterized by (θ, φ)) and the boundary R × S2
(∞) is located at ρ = π/2. The AdS

space-like volume form is thus given by

vol3 =
R4 sin2ρ

cos4ρ
dρ ∧ vol(S2) , (5.14)

where vol(S2) = sin θ dθ ∧ dφ. In addition it is useful to introduce the following two- and

one-dimensional volume elements

vol
(1)
2 =

R3 sin ρ

cos3ρ
dφ ∧ dρ , vol

(2)
2 =

R3 sin2ρ

cos3ρ
vol(S2) , vol1 = R2 sin ρ

cos2ρ
dφ , (5.15)

which correspond respectively to the volume form of the plane at θ = π/2, of the two-sphere

at constant radius ρ and of their intersection. Then consider the polyform

ΘG = Θ
(sf)
G + Θ

(DW)
G , (5.16)

with

Θ
(sf)
G = vol3 ∧ ω(sf) + χ2 ∧ ω

(DW)
ϕ=θ ,

Θ
(DW)
G = vol

(1)
2 ∧ ω

(DW)
ϕ=θ−π

2
+ χ(1) ∧ ω(string) , (5.17)
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where we have introduced χ(2) ≡ R3 tan3ρ vol(S2) and χ(1) ≡ R2 tan2ρdφ which are such

that

dχ(2) =
3

R
vol3 , dχ(1) = − 2

R
vol

(1)
2 , (5.18)

and for any two- respectively one-dimensional submanifold Π

χ(2)|Π ≤
∣

∣vol
(2)
2 |Π

∣

∣ ≤ vol(Π) , χ(1)|Π ≤
∣

∣vol1|Π
∣

∣ ≤ vol(Π) . (5.19)

We can see that ΘG satisfies the two basic properties of an ordinary calibration. Indeed,

using the properties of the internal pure spinors one finds from (5.18) that dHΘG = −vol3∧
e4AF̃ and from (5.19) that ΘG satisfies the local algebraic bound

[ΘG|Σ ∧ eF ]top ≤ EDBI(Σ,F) . (5.20)

Since we have not obtained ΘG from the background Killing spinors, we cannot imme-

diately state that it describes supersymmetric configurations. However, one can directly

check that ΘG still characterizes (homogeneous) supersymmetric space-filling D-branes and

straight radial domain walls (θ = π
2 ), and can be safely used to discuss their stability along

the lines of subsections 5.1 and 5.2 because this analysis only depends on the two basic

properties we have just mentioned. These configurations correspond to the space-filling

D-branes and only part of the domain walls in Poincaré coordinates: only the ones for

which in (5.12) c = 0 and cos α = 0 such that x2 = 0. Indeed, after the transforma-

tion to global coordinates the spherical domain wall of the first line of (5.12) leads to a

time-dependent configuration in global coordinates unless z → ∞, and the same applies

for the interpolating domain walls (sinα 6= 0, cos α 6= 0). They are thus not found in the

global coordinate analysis. Indeed, the inequalities in (5.19) can be saturated only at the

spatial boundary ρ = π/2 so that the calibration bound (5.20) can never be satisfied unless

for straight radial domain walls or for spherical domain walls at spatial infinity ρ = π/2

where the global time coincides with the Poincaré time. ΘG thus properly identifies the

supersymmetry condition for the domain walls ‘at the end of the universe’. In the same

way also the strings ‘at the end of the universe’ are described.

6. Examples

6.1 Background: SU(3)-structure vacua in IIA

As for the backgrounds, only type IIA ones with SU(3)-structure are studied in detail in the

literature, so we will consider examples of calibrated D-branes in this setting. An example

of a type IIB vacuum with SU(2)-structure is given as the near-horizon geometry of a

certain D-brane configuration in [35], while configurations with SU(3) × SU(3)-structure

presumably also exist, but no examples are known.

The SU(3) vacua have been analysed in [29, 30]. In this case we have η
(1)
+ = aη+ and

η
(2)
+ = bη+ and we can take the two normalized pure spinors to be

eiθΨ+ = eiθ̂eiJ , Ψ− = Ω̂ = (a/b∗)Ω , (6.1)
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where eiθ̂ = −ieiθa/b and

Jmn = iη†+γ̂mnη+ , Ωmnp = iη†−γ̂mnpη+ (6.2)

define the SU(3)-structure. Plugging in (6.1) into eqs. (2.7) and (2.8), together with the

(sourceless) Bianchi identity for F̂0

dF̂0 = 0 , (6.3)

one gets that θ̂,Φ and A must be constant, and we set A = 0 without loss of generality.10

To further solve the supersymmetry conditions (2.7) and (2.8) it will be convenient to

introduce the SU(3) torsion classes Wi as follows [36]

dJ = −3

2
Im(W̄1Ω̂) + W4 ∧ J + W3 (6.4a)

dΩ̂ = W1 J ∧ J + W2 ∧ J + W̄5 ∧ Ω̂. (6.4b)

We find then

W1 = − 4

3R
cos θ̂ , W2 real , W3 = W4 = W5 = 0 , (6.5)

which is called a half-flat geometry, and for the RR-fluxes

H =
2 sin θ̂

R
ImΩ̂ m ≡ F̂(0) =

5 sin θ̂

R
e−Φ , F̂(2) = −cos θ̂

3R
e−ΦJ + e−ΦW2 ,

F̂(4) =
3 sin θ̂

2R
e−ΦJ ∧ J , F̂(6) =

cos θ̂

2R
e−ΦJ ∧ J ∧ J . (6.6)

It turns out that next to the equation of motion for H also the Bianchi identity for F̂(4)

automatically follows from the supersymmetry equations. The first was shown for general

structure in [37] for the Minkowski case and we extend the proof in appendix A.2 to a

general D-calibrated background with time-like Killing vector so that in particular it also

holds for AdS4-compactifications. The second also makes sense since a supersymmetric

D2-brane, which would source this Bianchi, is incompatible with SU(3)-structure. The

only non-trivial Bianchi identity is then the one for F(2), which we find from (A.15) to be

dF̂(2) + mH = −j3 , (6.7)

where j3 is the source related to supersymmetric D6-branes and O6-planes. This leads to

1

3R2

(

−2 cos2 θ̂ + 30 sin2 θ̂
)

ImΩ̂ + e−ΦdW2 = −j3 . (6.8)

Let us focus on the (3, 0) ⊕ (0, 3)-part of this equation. From W2 ∧ Ω̂ = 0 one can show

that

dW2 =
1

4
(W2)

2 ImΩ̂ + (2, 1) + (1, 2) , (6.9)

10That the warp factor should be always constant is rather mysterious especially if one should want to go

beyond the probe limit and study the backreacted geometry associated to, say, a localized supersymmetric

D6-brane. One would expect this geometry to have a non-constant warp factor.
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with (W2)
2 = 1

2 W2mnW mn
2 . Since the (3, 0) ⊕ (0, 3)-part of the left-hand side of (6.8) is

non-singular, it follows that j3 must correspond to all smeared sources. While it is puzzling

that we are not able to introduce localized sources, this is of course consistent with our

earlier observation that the warp factor has to be constant. Now, for supersymmetric and

thus calibrated sources we have

j3 =
∑

l∈sources

cl ImΩ̂ + (2, 1) + (1, 2) , (6.10)

where cl > 0 for a D6-brane and cl < 0 for an O6-plane. It follows that in the absence of

O6-planes we have the bound

| sin θ̂| ≤ 1

4
. (6.11)

AdS4 compactifications can circumvent the no-go theorem of [38] so that it should indeed

be possible to find backgrounds that satisfy all the equations of motion without introducing

orientifold sources. As far as we know however examples without O6-planes are only known

for W2 = 0 [29], saturating the above bound (if there are also no smeared D6-branes) and

leading to nearly Kähler geometry. Since they also provide the easiest class of solutions for

the background we will present examples of calibrated D-branes in this setting.

Before we introduce the nearly Kähler manifolds in more detail, let us note that on

the other hand it is possible to introduce smeared O6-plane sources that are tuned such

that they exactly compensate the first term in (6.8). One can then take W1 = W2 = 0

and end up with a Calabi-Yau manifold. It was proposed in [7] that this is the underlying

geometry for the model with all moduli stabilized of [4]. However, there does not seem to

be any other compelling reason to tune the sources in this way except that it reduces to a

Calabi-Yau analysis, which is well understood.

Nearly Kähler manifolds are such that their cone

ds2
7 = du2 + u2(w1)

2(ds2
6) , (6.12)

is a G2-holonomy manifold [36]. We have allowed for an extra constant warp factor w1 to

be determined in a moment. Indeed, defining the associative and coassociative forms as

follows

φ = du ∧ u2(w1)
2J + u3(w1)

3ImΩ̂ , (6.13a)

⋆7φ =
1

2
u4(w1)

4J ∧ J − du ∧ u3(w1)
3ReΩ̂ , (6.13b)

one finds d7φ = d7(⋆7φ) = 0 iff

dImΩ̂ = 0 , dJ ∧ J = 0 , (6.14a)

dJ = 3w1ImΩ̂ , dReΩ̂ = −2w1J ∧ J . (6.14b)

Comparing with (6.5) we find that we should take w1 = −(1/2)W1 = (2/3R) cos θ̂. We

remark that this is not the same structure as the G2 × G2-structure of (B.3). The latter,

for which the RR-fields spoil the holonomy as in (A.27), is defined in general, while only
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for W2 = 0 we can define a G2-holonomy (and then only if we define it differently as we

would in general, namely with the constant warping w1). This could be compared with a

Sasaki-Einstein geometry for supersymmetric compactifications to AdS5, of which the cone

has SU(3)-holonomy. This is also not the most general case [39].

The only homogeneous nearly Kähler manifolds in six dimensions are [40]

S6 ≃ G2

SU(3)
, (6.15a)

S3 × S3 ≃ SU(2) × SU(2) , (6.15b)

CP
3 ≃ Sp(2)/SU(2) × U(1) , (6.15c)

F (1, 2) ≃ SU(3)/U(1) × U(1) . (6.15d)

There are no non-homogeneous examples known. In the following subsection we will each

time present the D-brane example for a general nearly Kähler background and then make

it explicit for the special cases of S6 and S3×S3, so let us present these geometries in some

more detail. S6 is most easily described through its cone, which is seven-dimensional flat

space considered as the space of imaginary octonions [41]. We can define the associative

form as follows

φ(x, y, z) = G(x, y · z) , (6.16)

where G indicates the flat seven-dimensional metric, x, y and z are imaginary octonions

and · is the octonionic product. In coordinates we can take

φ = du1 ∧ du2 ∧ du4 + du1 ∧ du5 ∧ du6 + du1 ∧ du3 ∧ du7 + du2 ∧ du3 ∧ du5

+ du2 ∧ du6 ∧ du7 + du3 ∧ du4 ∧ du6 + du4 ∧ du5 ∧ du7 . (6.17)

The nearly Kähler space S6 can then be taken to be the unit sphere. It can be shown that

Jz , the right multiplication by the imaginary unit octonion z, induces a linear transforma-

tion on the tangent space TzS
6, which moreover satisfies J2

z = −1. We can use it to define

the complex structure and associated two-form

(w1)
2J(x, y) = G(x, Jzy) = G(x, y · z) = φ(x, y, z) , (6.18)

where x, y ∈ TzS
6. It follows that, if z is given by the coordinates (ui),

(w1)
2J = ιui∂i

φ
∣

∣

S6 =
1

2
uiφijkduj ∧ duk

∣

∣

S6 , (6.19)

where as indicated we have to take the pullback to S6. The (3, 0)-form Ω̂ we find as follows

(w1)
3Ω̂ =

[

−ιui∂i
(⋆7φ) + iφ

]
∣

∣

S6 . (6.20)
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On S3 × S3 there exists a unique left-invariant nearly Kähler structure [40], which is

given by

J = − 1

6
√

3(w1)2

(

e1 ∧ f1 + e2 ∧ f2 + e3 ∧ f3
)

, (6.21a)

Ω̂ =
1

(3w1)3

{

e1 ∧ e2 ∧ e3 + f1 ∧ f2 ∧ f3 − 1

2

(

e1 ∧ f2 ∧ f3 + f1 ∧ e2 ∧ f3 + f1 ∧ f2 ∧ e3
)

− 1

2

(

f1 ∧ e2 ∧ e3 + e1 ∧ f2 ∧ e3 + e1 ∧ e2 ∧ f3
)

+ i
√

3

[

1

2

(

e1 ∧ f2 ∧ f3 + f1 ∧ e2 ∧ f3 + f1 ∧ f2 ∧ e3
)

−1

2

(

e1 ∧ e2 ∧ f3 + e1 ∧ f2 ∧ e3 + f1 ∧ e2 ∧ e3
)

]}

, (6.21b)

where ei are the left-invariant Maurer-Cartan forms for the first S3, de1 = e2 ∧ e3 and

cyclic, and f i the ones for the second, df1 = f2 ∧ f3 and cyclic.

6.2 Examples of calibrated D-branes

First we provide examples of calibrated D-branes on these nearly Kähler geometries that

are space-filling from the four-dimensional point of view, then we come to the domain walls.

The reader can find an overview of all the calibrated D-branes we will describe in table 1.

Space-filling D-branes. A space-filling D6-brane has to calibrate ReΩ̂. More specifi-

cally the F-flatness condition J |Σ = F = 0 implies that the D-brane wraps a Lagrangian

submanifold in the internal space. From (4.6), which says that the F-flatness implies the

D-flatness, follows that this manifold is automatically special Lagrangian i.e. ImΩ̂|Σ = 0.

In this context of Lagrangian submanifolds of nearly Kähler manifolds this was already

noted in [42].

A concrete example on S6 is the equatorial S3 ⊂ S6 with u1 = u2 = u4 = 0. One can

easily verify the special Lagrangian conditions directly or alternatively note from (6.13b)

that the intersection of S6 with a radially extended coassociative cycle in R
7 leads to a

special Lagrangian cycle. As shown in (5.2) a D-brane wrapping a submanifold like this

solves its equations of motion, meaning its energy is stationary under small variations, but

(naively) it is not at minimal energy. This implies that there are tachyonic modes. And

moreover, an S3 inside S6 is homologically trivial so one might expect that it would just

shrink to zero. In section 5 however we showed the stability in general. Let us present an

explicit check for our example. Suppose we consider a perturbation δu1. From the Dirac-

Born-Infeld action we find that the action for δu1 up to quadratic order is proportional to

−1

2
gµν∂µ δu1∂ν δu1 +

3

2
(w1)

2(δu1)2 , (6.22)

from which we find

m2 = −3(w1)
2 = − 4

3R2
cos2θ̂ , (6.23)

satisfying the Breitenlohner-Freedman bound m2 > − 9
4R2 [16] as predicted by the general

discussion in 5.1. So they do not signal an instability.
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D-brane Type Internal cycle F = tan θ̂J |Σ + F eiα

D6 sf SLAG F = 0 NA

D8 sf codimension-1 no solution found NA

D2 DW point F = 0 eiα = eiθ̂

D4 DW complex 2-cycle F = −cotan(θ̂ − α)J |Σ fixed by
∫

Σ F ∈ Z

D6 DW not possible / /

D8 DW M F (1, 1) and primitive eiα(θ̂)

Table 1: Overview of calibrated D-branes in nearly Kähler type IIA SU(3)-structure vacua.

On S3 × S3 we see immediately from (6.21) that a D6-brane wrapping one of the S3

factors — homologically non-trivial this time — is calibrated.

A calibrated D8-brane wraps a codimension-one submanifold in the internal space. The

real problem is finding the world-volume gauge field so that dF = H|Σ and the F-flatness

condition

(iJ |Σ + F)2 = 0 , (6.24)

which is equivalent to the condition for having a coisotropic D-brane [43], is satisfied. Again

the D-flatness ImΩ̂|Σ ∧ F = 0 then follows automatically. Since H = tan θ̂ dJ , we have a

globally defined B-field B = tan θ̂J , and we can put F = tan θ̂J |Σ +F, with F a necessarily

closed U(1) world-volume field-strength. It is impossible to have supersymmetric space-

filling D8-branes with F = 0 since the F-flatness condition would then reduce to

(J ∧ J)|Σ = 0 , (6.25)

which cannot be satisfied. On the other hand, with a non-trivial world-volume field-

strength F we have the conditions

(J ∧ J)|Σ = cos2θ̂ F ∧ F = −cotan θ̂ J |Σ ∧ F , (6.26)

which would leave room for non-trivial configurations. Unfortunately, we did not find any

solutions nor were we able to show that a solution is impossible.11

Domain wall D-branes. Also for domain walls, it is useful to rewrite the calibration

condition (4.1) as a pair of conditions (4.2), which we will still refer to as F-flatness and D-

flatness conditions in analogy to the case of space-filling branes. However, now F-flatness

does not automatically imply D-flatness so that the two conditions have to be checked

separately.

For all kinds of domain walls the F-flatness conditions read

[

Ω̂|Σ ∧ eF
]

top-1
= 0 ,

[

ιXΩ̂|Σ ∧ eF
]

top
= 0 ∀X ∈ TM , (6.27)

11Examples of coisotropic D-branes are very few. As far as we know as for the five-dimensional

codimension-one coisotropic D-branes explicit solutions have only been found on a torus with H = 0 [44].
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which can be rephrased as the requirement that they should wrap an “almost” complex

cycle in the internal space, i.e. a cycle for which the tangent space in every point is stable

under the almost complex structure, and F is of type (1,1). As the complex structure is

not integrable it is not evident that such cycles exist, as the tangent spaces might not be

integrable. So let us discuss the different cases separately. A D2-brane obviously always

satisfies the F-flatness conditions (6.27) since it is point-like in the internal space.

On the other hand, calibrated D6-brane domain walls do not exist since there is no

almost complex 4-cycle. We can show this from the following property of the Courant

bracket [10]

[X, Y] · Ψ = X · Y · dHΨ , (6.28)

with Ψ a pure spinor and X, Y ∈ Γ(L). Applied to the case at hand, it follows for v,w ∈
Γ(T 0,1

M ) that

[v,w]|i
Γ(T 1,0

M
)
= w1

ˆ̄Ωi
jkv

jwk , (6.29)

so that for an integrable tangent space two complex coordinates will always induce the

third.

For D4-branes there are generically solutions to (6.27). On S6 a concrete example of

a D4-brane satisfying (6.27) would be the equatorial S2 ⊂ S6 with u3 = u5 = u6 = u7 = 0.

Indeed the F-flatness condition reduces then to (ιX Ω̂)|S2 = 0 for any X ∈ TS6 and is

satisfied since plugging in (6.20) we find

(ιX Ω̂)|S2 = i(w1)
−3[ιXφ|S6 ]|S2 = i(w1)

−3[ιX(du1 ∧ du2 ∧ du4)|S6 ]|S2 = 0 , (6.30)

which can be checked by introducing appropriate angular coordinates for S6 and S2 ⊂ S6.

Alternatively, one can note that from (6.13a) follows that the intersection of S6 with a

radially extended associative cycle in R
7 leads to an almost complex cycle. On S3 ×S3 an

example of an almost complex two-cycle would be S1 × S1 with the first S1 equatorial in

the first S3 and the second S1 the corresponding equator (by (6.21a)) in the second S3.

Again, the condition (ιX Ω̂)|S1×S1 = 0 can be easily checked from the explicit form of Ω̂

given in (6.21b), taking into account that the pull-backs of e2, e3, f2 and f3 to S1 × S1

vanish.

Regarding D8-branes, they are always almost-complex since they completely fill the

internal space, and thus (6.27) reduces to the condition that F must be (1, 1). In general

nearly Kähler backgrounds we can always solve this condition together with the modified

Bianchi identity dF = H|Σ by putting F = tan θ̂J |Σ + F, where F is a necessarily closed

(1, 1) U(1) world-volume field-strength.

Rests us to analyse the D-flatness condition, which reads

Im
[

ei(θ̂−α)eiJ |Σ+F
]

top
= 0 , (6.31)

for a constant phase eiα that also determines the shape of the domain wall in the four

dimensions as in (5.12). For a D2-brane we find eiα = eiθ̂. For the other cases, we can

again use the splitting F = tan θ̂J |Σ + F, with (1, 1) by F-flatness, and conclude that
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D-flatness requires

D4 : F = −[tan θ̂ + cotan(θ̂ − α)]J |Σ , eiα classically free , (6.32a)

D8 : F primitive , eiα fixed . (6.32b)

For the D8 the relation between α and θ̂ depends on F. For example, if we take F = 0

then cos(2θ̂ − α) = 0. On the other hand, for D4-branes α is classically unfixed, but

at the quantum level must satisfy a constraint coming from the quantization of the U(1)

field-strength F, which imposes that

∫

Σ
F = n ∈ Z . (6.33)

7. Conclusions

In this paper we have studied several aspects of supersymmetry and stability of D-branes on

flux compactifications of type II theories to AdS4 space-time. Most of the arguments rely on

the existence of appropriate background generalized calibrations in the sense of [14, 15, 20].

They identify supersymmetric D-branes and must obey differential conditions which turn

out to be equivalent to the requirement that the background is supersymmetric. This deep

relation between D-brane and background structures allows us to give general arguments

proving the classical stability (even under large deformations) of supersymmetric D-branes,

some of them wrapping trivial cycles in the internal six-dimensional space. Our results can

be seen as a geometrical ten-dimensional realization in string theory of the results of [16, 17]

for supersymmetric field theories in AdS4. It would be nice to extend our results to include

the coupling to the closed string sector described in e.g. [2, 5, 45 – 48].

Even though we have used the classical theory, it should be possible to incorporate

quantum perturbative and non-perturbative corrections along the lines of [2] without spoil-

ing the main points of our discussion. Furthermore, we have focused on the case of four-

dimensional compactifications having phenomenology as main motivation, but many ar-

guments are more general. Indeed, in appendix A we have proved the relation between

the conditions for general static supersymmetric backgrounds (admitting at least a static

Killing spinor), of which AdS4-compactifications are just a special case, and the differential

conditions for calibrations associated to static supersymmetric D-branes.

However, there are many interesting D-brane configurations that are supersymmetric

(possibly with respect to a non-static Killing spinor) but not static because they either are

time-dependent, like giant gravitons [49], or they have electric world-volume gauge fields,

like the F1-D3 intersection (the electric BIon) [50]. It would be interesting to extend the

theory of calibrations to these configurations [51].

The extension to more general backgrounds is also interesting for applications to the

AdS/CFT correspondence. For example the addition of branes filling the AdS part of the

ten-dimensional geometry corresponds to the addition of flavours to the dual conformal field

theory (see e.g. [52]). This generically destroys the conformal invariance in the resulting

gauge theory and indeed, after taking into account the backreaction of the flavour branes
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in the dual geometry, the AdS space should be substituted by a geometry encoding the

non-trivial renormalization group flow of the dual gauge theory (see e.g. [53, 54] for a

discussion considering localized sources and [55] for more recent examples using smeared

D-branes). This effect seems puzzling in the context of phenomenologically relevant flux

compactifications to AdS4 where the introduction of D-branes and orientifolds preserving

the background supersymmetry is not expected to modify the AdS4 vacuum geometry, like

it is indeed the case in compactifications to flat space.

We see this puzzle about the backreaction directly in the examples of IIA SU(3)-

structure backgrounds, discussed in section 6.1, where the supersymmetry conditions (to-

gether with the Bianchi identity for F̂0) force the warp factor to be constant. This means

that, while probe supersymmetric space-filling D-branes are possible, and indeed we con-

structed explicit examples in the special case of nearly Kähler backgrounds, a problem

arises when one tries to consider the backreaction of such a D-brane if it is fully local-

ized. Indeed, close to the D-brane the backreacted geometry should be similar to the

backreaction of the D-brane in flat space, so that we expect a non-constant warp factor.

It is possible that the structure of the backreacted geometry gets deformed to a genuine

SU(3) × SU(3)-structure, which presumably does allow non-constant warp factor. This

would however also mean that the generators of the preserved internal supersymmetry

change, which is puzzling for the backreaction of D-branes that were already supersym-

metric with the background as probes. Another possibility is that taking into account

stringy corrections might allow for non-constant warp factor. We hope to report on this

problem in a future publication.
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A. Supersymmetry and calibrations: a general discussion

We would like to discuss the relation between the supersymmetry of a certain supergravity

vacuum and the fact that it is automatically equipped with a calibration that allows to

characterize its supersymmetric D-branes. In the absence of fluxes, this relation is well
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known [56] and relies on the physical property that supersymmetric branes are naturally

volume-minimizing. The way to include (some of the) background fluxes was indicated

in [13], where a calibration was required to minimize the brane energy rather than the

volume. See for example [57] for work applying/developing this idea. This work also

indicates that the relation is not restricted to D-branes, see also [37] for a calibration for

space-filling NS5-branes. However the prescription given in [13] does not allow to take into

account world-volume fluxes. This limitation turns out to be problematic when considering

D-branes on type II backgrounds with general fluxes, since the world-volume flux F is

related to the background H-field by the modified Bianchi identity dF = H|Σ. The way

to solve this problem was presented in [14, 15] (see also [20]).

Before recalling our definition of a generalized calibration we have to discuss the struc-

ture of the type II backgrounds we are considering. First of all, we require that the back-

ground admits a globally defined time-like Killing vector so that it is possible to introduce

an associated time t. Secondly, as we will recall later, calibrations allow to characterize

the lower bound of the energy of a certain D-brane configuration in terms of its ‘topolog-

ical’ properties [20]. Thus we consider a setting in which possible dynamically conserved

charges, which are not topological in nature and may enter the D-brane energy, are set to

zero. A natural way to achieve this is by requiring both the space-time and the D-branes

to be static.

We thus assume that the ten-dimensional space-time is topologically X = R×M, with

coordinates XM = (t, ym), and the ten-dimensional metric splits as

G ≡ GMNdXMdXN = −e2A(y)dt2 + gmn(y)dymdyn, (A.1)

where g is the metric on M. The warp factor A and the dilaton Φ depend only on the

internal coordinates ym, just as the H field which we also assume to only have internal

legs. Furthermore, grouping the RR field-strengths in dH-closed polyforms F =
∑

k F(k),

where k is even in IIA and odd in IIB, they can be decomposed as

F = dt ∧ eAF̃ + F̂ , (A.2)

where F̃ and F̂ are polyforms on M that do not depend on the time t. As in [15] we use

the conventions of [58], in which we have the following duality relation between the electric

and magnetic RR fields

F̃ = σ(⋆9F̂ ) , (A.3)

where σ reverses the order of the indices of the form it is acting on. In this setting we will

study static D-brane configurations with world-volume gauge field F purely along M i.e.

we do not consider electric world-volume gauge fields.

A.1 Generalized calibrations: definition and main properties

According to [14, 15] a generalized calibration12 is given by a dH-closed polyform ω̂ on M
such that, for any static D-brane wrapping the generalized submanifold (Σ,F) of M, one

12In the following we will omit the adjective ‘generalized’, implicitly always assuming the calibrations

with both world-volume and background fluxes.
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has

[ω̂|Σ ∧ eF ]top ≤ E(Σ,F) , (A.4)

where E(Σ,F) is the energy density of the D-brane configuration. Choosing the electric

component of the RR field-strengths F̃ as the fundamental one, one can decompose the

RR gauge potentials C =
∑

k C(k) as C = dt ∧ eAC̃. Then, the Dp-brane energy density

E(Σ,F) appearing in (A.4), which can be extracted from the D-brane action consisting of

a Dirac-Born-Infeld and a Chern-Simons part, is given by

E(Σ,F) = eA−Φ
√

det(g|Σ + F) dpσ − eA[C̃|Σ ∧ eF ]top . (A.5)

Note that the definition of the calibration ω̂ depends on the gauge choice for the RR

potential C̃. An alternative gauge-invariant definition is however possible, according to

which the calibration is given by a polyform ω such that

[ω|Σ ∧ eF ]top ≤ eA−Φ
√

det(g|Σ + F) dpσ , (A.6)

and

dHω = −eAF̃ . (A.7)

Since F̃ = −e−AdH(eAC̃), the two definitions are obviously related by

ω̂ = ω − eAC̃ . (A.8)

We say that the space M is D-calibrated if it is equipped with a calibration ω̂ (or ω)

as defined above. If this is the case, a generalized submanifold (Σ,F) of M is said to be

calibrated with respect to ω̂ (or ω) if at any point the inequality (A.4) (or equivalently (A.6))

is saturated, i.e. in terms of ω:

[ω|Σ ∧ eF ]top = eA−Φ
√

det(g|Σ + F) dpσ, at any point ∈ Σ . (A.9)

As discussed in [20], one can define a proper boundary operator ∂̂ acting on chains

of generalized submanifolds of possibly different dimensions. Thus the theory naturally

allows to treat networks of D-brane of different dimensions and gauge invariance requires

a D-brane network to wrap a generalized cycle defined by ∂̂. Furthermore, since the

calibration ω̂ is dH-closed, it is easy to see that a calibrated D-brane network minimizes

its energy inside its generalized homology class, and this ‘topological’ minimal energy is

obtained by integrating the calibration ω̂ over any representative generalized cycle inside

the corresponding generalized homology class. We refer to [20] for more details and display

here for simplicity the argument for a single D-brane. Take (Σ,F) a calibrated D-brane

and (Σ′,F ′) any other D-brane in the same generalized homology class which means there

is a (Γ, F̃) such that ∂Γ = Σ′ − Σ and F̃ |Σ = F , F̃ |Σ′ = F ′. We find

E(Σ′,F ′) ≥
∫

Σ′

ω̂|Σ′ ∧ eF
′

=

∫

Σ
ω̂|Σ ∧ eF +

∫

Γ
dH ω̂|Γ ∧ eF̃ = E(Σ,F) , (A.10)
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where we used (A.4), dH ω̂ = 0 and (A.9). This demonstrates clearly that the dH-closedness

is an essential part of the definition of the calibration form and explains why the would-be

calibrations of section 3 have problems with stability.

To a generalized submanifold (Σ,F) a generalized current j(Σ,F) in M can be associ-

ated [27], which is defined such that

∫

Σ
φ|Σ ∧ eF =

∫

M
〈φ, j(Σ,F)〉 , (A.11)

for any polyform φ. The cohomology of these currents is dual to the above introduced

generalized homology. The energy density E(Σ,F) of the calibrated D-brane is then given

by

E(Σ,F) =

∫

M
eA−Φ〈ω̂, j(Σ,F)〉 , (A.12)

and the calibration conditions can be expressed in terms of j(Σ,F) (see [27] in the case of

compactifications to four-dimensional flat Minkowski space). One can analogously define

a current jX
(Σ,F) for the same generalized submanifold, but now seen as a submanifold of

the total ten-dimensional space X. It can be decomposed as

jX
(Σ,F) = dt ∧ eÃ(Σ,F) + j(Σ,F) . (A.13)

The restriction throughout the paper to static D-branes without electric world-volume

gauge fields translates into the statement that

̃(Σ,F) = 0 . (A.14)

Beyond the probe approximation, D-branes and orientifolds13 act as sources for the RR-

fields and change their equations of motion and Bianchi identities as follows (see e.g. [37])

dH F̂ = −jtot , dH(eAF̃ ) = ̃tot = 0 , (A.15)

with jtot =
∑

(Σ,F)Dp
TDp j(Σ,F)Dp

− ∑

(Σ)Op
TOp j(Σ)Op

. Furthermore it was shown in [37]

that exactly if these sources are calibrated, supersymmetry of the background together

with the above source-corrected Bianchi identities and equations of motion of the form-

fields implies the source-corrected Einstein and dilaton equations.

A.2 Supersymmetry and generalized geometry of M
Let us now discuss the relation with supersymmetry. As we will discuss, under mild con-

ditions supersymmetry equips vacua with calibrations. Vacua that satisfy these conditions

will be called D-calibrated.

The supersymmetry is generated by two Majorana-Weyl Killing spinors ǫ1 and ǫ2 of

opposite/same chirality in IIA/IIB. One can construct two one-forms

V
(1)
M = ǭ1ΓM ǫ1 , V

(2)
M = ǭ2ΓM ǫ2 , (A.16)

13In supergravity orientifolds are described in the same way as D-branes, except that their tension is

negative and F vanishes.
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and combine them into the one-forms V (±) = V (1) ± V (2). Indicating with V(±) the cor-

responding vectors obtained by raising the index with the ten-dimensional metric G, one

finds from the supersymmetry Killing spinor conditions (see also e.g. [51, 59])

LV+G = 0 , dV (−) = −ιV(+)
H . (A.17)

These equations imply that V(+) is a Killing vector of the ten-dimensional metric and

H-field (the second equation is actually stronger).

Eqs. (A.17) are valid in full generality, without any restriction on the bosonic con-

figuration. However in order to proceed, for our purposes we restrict to the static 1+9

splitting described at the beginning of this appendix, even though the following steps may

be repeated in a completely generic setting. The gamma-matrices decompose as

Γ0 = iσ2 ⊗ 1 , Γm = σ1 ⊗ γm , Γ(10) = σ3 ⊗ 1 , (A.18)

where underlining indicates flat indices, γm are the nine-dimensional gamma-matrices,

which we take real and symmetric, and σi the standard Pauli matrices. The supersymmetry

generators split as

ǫ1 =

(

1

0

)

⊗ χ1 , ǫ2 =































(

0

1

)

⊗ χ2 (IIA)

(

1

0

)

⊗ χ2 (IIB)

, (A.19)

where χ1,2 are real spinors on M. We indicate their norms with

χT
1 χ1 = a2 , χT

2 χ2 = b2 , (A.20)

and construct two one-forms on M as follows

v(1)
m = χT

1 γmχ1 , v(2)
m = ∓χT

2 γmχ2 in IIA/IIB . (A.21)

The one-forms (A.16) on X = R ×M then look in 1+9 notation like

V (1) = (eAa2,−v(1)) , V (2) = (eAb2,−v(2)) . (A.22)

Defining v(±) = v(1) ± v(2) we find from (A.17) applied to our static configuration two sets

of conditions. We first have the following geometrical properties for M

v(+)(A) = 0 , Lv(+)
g = 0 , dv(−) = −ιv(+)

H , (A.23)

while the second set relates the norms of the internal spinors χ1 and χ2 to the warp factor

d[e−A(a2 + b2)] = 0 , d[eA(a2 − b2)] = 0 . (A.24)

The two internal spinors χ1 and χ2 can now be used to construct a real polyform of

definite parity Ψ associated by the Clifford map to the tensor product

/Ψ = χ1 ⊗ χT
2 . (A.25)
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Note that in nine dimensions a complete base for the real 16 × 16 real matrices is given

by all the γm1...mp with p either even or odd. This means that /Ψ corresponds to either

an even or an odd polyform.14 As will become clear soon, we need to choose the even

representative in IIA and the odd representative in IIB:15

Ψ =

{

Ψ(even) in IIA

Ψ(odd) in IIB
. (A.26)

A long, but straightforward calculation, which is similar to the analogous six-

dimensional one of [8], shows that the Killing spinor equations can be manipulated into a

condition for Ψ in both IIA and IIB, which reads

dH(e−ΦΨ) =
1

32
(a2 + b2)F̃ − 1

32
v(−) ∧ F̂ − 1

32
ιv(+)

F̂ . (A.27)

The integrability of this equation together with (A.23), (A.24) and (A.15) implies that

Lv(+)
F̂ + V · jtot = 0 , (A.28)

where we have defined the generalized vector V = (v(+), v
(−)). If all sources are calibrated,

which implies (A.33) as we will see in the next subsection, we find that the second term

above is zero so that also Lv(+)
F̂ = 0. Using the Killing spinor equations it is furthermore

possible to see that v(+)(Φ) = 0. Thus v(+) generates a symmetry of the full background

configuration. One can immediately recognize in (A.27) a strong similarity with eq. (A.7),

thus suggesting a natural calibration form for D-branes of the type described in subsec-

tion A.1. To make this point more precise, we have to discuss the supersymmetry of probe

D-branes in our background. This will allow us to clarify when our supersymmetric vacua

turn out to be really D-calibrated.

But let us first note for completeness that the following relation also follows in a similar

way from the background supersymmetry

− s d
[

16 e−2Φ
(

χ1 ⊗ χT
1 − χ2 ⊗ χT

2

)]

5

= (a2 + b2)(e−2Φ ⋆9 H) ∓ 32
[

σ(F̂ ) ∧ e−ΦΨ
]

6
, (A.29)

for IIA/IIB, and where s is a sign defined by γ1...9 = s1. The 5-form on the left-hand side

can presumably be used to construct the calibration form for an NS5-brane, although we

will not study this in detail in this paper since the action and supersymmetry of such a brane

in the presence of world-volume gauge fields is quite complicated. From the integrability of

the above equation follows in a way similar to [37] that if (A.36) is satisfied the background

supersymmetry implies the equation of motion for H.

14The two possibilities are related by Hodge duality, as can be obtained from the ‘self-duality’ /λ = − /σ(⋆9λ)

which is valid for any form λ on M.
15This choice can for example be understood by requiring a natural ten-dimensional origin for Ψ, which

can be defined as Ψm1...mp
∼ ǭ2Γm1...mp

ǫ1.
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A.3 Introducing D-branes: when is M D-calibrated?

Let us now introduce a static probe D-brane in our supersymmetric background, filling

the time direction and wrapping a generalized cycle (Σ,F) in M. The usual κ-symmetry

argument adapted to our case implies that a Dp-brane is supersymmetric if and only if

γDp(F)χ2 = χ1 , (A.30)

with

γDp(F) =
1

√

det(g|Σ + F)

∑

2l+s=p

ǫα1...α2lβ1...βs

l!s!2l
Fα1α2 · · · Fα2l−1α2l

γβ1...βs
. (A.31)

A key observation is that γDp(F)T γDp(F) = 1 and thus γDp(F) is an orthogonal matrix.

This implies that static supersymmetric D-branes are allowed only if χ1 and χ2 have the

same norm. We are then led to add the following necessary condition for a D-calibrated

background

a2 = b2 . (A.32)

From (A.30) follows furthermore that

V · j(Σ,F) = 0 . (A.33)

Since j(Σ,F) can also be seen as the pure spinor defining the generalized tangent bundle

associated to (Σ,F) we find from the above equation that v(+) is along Σ and

v(−)|Σ = ιv(+)
F . (A.34)

From the last equation in (A.23) then follows that Lv(+)
F = 0 so that v(+) is also a

symmetry of the world-volume gauge field on calibrated D-branes. Eqs. (A.32) and (A.33)

can be combined as V
X · jX = 0 upon defining the ten-dimensional generalized vector

V
X = (V(+), V

(−)) and using (A.14).

It is easy to see that the D-brane supersymmetry condition (A.30) can be written in

terms of a calibration condition of the form (A.9) if we choose as calibration

ω =
16eA−Φ

a2
Ψ . (A.35)

It turns out that requiring that all sources are calibrated is not quite sufficient to ensure

that ω is a proper calibration for probes. Indeed, one has to check the two properties (A.6)

and (A.7). The algebraic condition (A.6) is easily derived from the orthogonality of γDp(F).

The differential condition (A.7) on the other hand should follow from the background

supersymmetry. However, from (A.27) we see that (A.7) can be satisfied only if

v(−) ∧ F̂ + ιv(+)
F̂ = 0 . (A.36)

Thus it seems that in order to have a D-calibrated vacuum, we need to impose constraints

involving v(+) and v(−). The easiest way to impose then is to demand

ιv(+)
F̂ = 0 and v(−) = 0 , (A.37)
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which is indeed satisfied for the four-dimensional compactifications to Minkowski and AdS

backgrounds. It would however be interesting to see if there are other explicit cases in

which the condition (A.36) can be satisfied by some other means.16

B. Generalized Hitchin flow

Using the Poincaré coordinates for AdS4 it is natural to define

ρ = eAdz ∧ ReΨ1 + Re(eiθΨ2) . (B.1)

It follows that

ρ̂ = ⋆7σ(ρ) = −eAdz ∧ Im(eiθΨ2) − ImΨ1 , (B.2)

and thus

Θsf
P = e3A+ 3z

R dt ∧ dx1 ∧ dx2 ∧ ρ , (B.3a)

ΘDW
P = −e2A+ 2z

R dt ∧ dx1 ∧ ρ̂ . (B.3b)

In fact, (ρ, ρ̂) are the pure spinors of a generalized G2 × G2-structure. We can also find

them by defining seven-dimensional spinors

η(1) = e
z

2R

[(

1

0

)

⊗ η
(1)
+ ± e−iθ

(

0

1

)

⊗ η
(1)
−

]

, (B.4a)

η(2) = e
z

2R

[(

1

0

)

⊗ η
(2)
∓ ± e−iθ

(

0

1

)

⊗ η
(2)
±

]

, (B.4b)

with the upper/lower sign for IIA/IIB respectively and the seven-dimensional gamma-

matrices

γi = σ3 ⊗ γ̂i , γz = eAσ1 ⊗ 1 . (B.5)

Note that the ten-dimensional supersymmetry ansatz (2.3) in terms of these seven-

dimensional spinors becomes

ǫ1 = ζ0 ⊗ η(1) ,

ǫ2 = ζ0 ⊗ η(2) , (B.6)

with ζ0 a constant three-dimensional spinor. Then we can write (ρ, ρ̂) as bilinears of the

seven-dimensional spinors

η(1)η(2)† =
||η(1)||||η(2)||

8
ρ̂ , (B.7a)

(1⊗ σ2)η
(1)η(2)† = −||η(1)||||η(2)||

8
ρ . (B.7b)

16For example one might have non-identically vanishing v(−) but F̂ = v(−) ∧ . . ..
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From the general results of appendix A (see also [60] in the absence of a warp factor

and RR-fields) we find that supersymmetry in compactifications of type II on R
1,2 leads to

a G2 × G2-structure that satisfies

dH(e3A+ 3z
R ρ) = −e4A+ 3z

R dz ∧ F̃ , dH

(

e2A+ 2z
R ρ̂

)

= 0 . (B.8)

For supersymmetric three-dimensional space-time filling D-branes we find from the

κ-condition Γ̂Dpǫ2 = ǫ1

−(σ2 ⊗ 1)γ̂(p−2)η
(2) = η(1) , (B.9)

which implies
√

det(g7|Σ + F) dp−2σ = ρ|Σ ∧ eF , (B.10)

so that ρ is the calibration form. An alternative formulation of the condition for the

D-brane to be calibrated is

〈X · ρ̂, j(Σ,F)〉 = 0 . (B.11)

Note that this F-flatness-type condition again implies the D-flatness.
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